Name: Login: cs61la-

Quiz #4

1.

(0.5 points) Louis Reasoner doesn’t understand why the lazy evaluator needs to use a special underlying
representation for thunks. He suggests that thunks be implemented using derived expressions that create
meta-Scheme procedures.

In other words, Louis’s modifications would cause expressions of the form:

(<compound-procedure> <arg,> ... <arg,>)

to be rewritten automatically as:

(<compound-procedure> (1 anbda () <arg;>) .. (lanbda () <arg,>))

Louis rewrites act ual - val ue appropriately to invoke these new thunks:

(define (actual -val ue exp env)
(nc-eval (list exp) env))

Even if Louis successfully integrates these changes into the lazy evaluator, why will his plan fail? Ignore details
of memoization.

On page 404 of the SICP textbook, Abelson and Sussman state:

A thunk must package an expression together with the environment, so that the argument can be produced
later.

Explain. Why do thunks need to store an environment? Give sample code that demonstrates this need.

Name: Login: cs61la-

2. (0.5 points) Write a procedure dept h that calculates the maximum depth of a tree that is represented as a list.
For example:

(depth " ())

should return 0,

(depth '(a b c d e))

should return 1, and

(depth " (a ((b) c) d (e)))

should return 3.

3. (0.5 points) Which of the following must be special forms? Circle your answers.

+ eval
accumul at e force
apply if

begi n | anbda

car | et

cdr quot e

cond set!

cons set-car!
cons-stream set - cdr!
define stream car
del ay stream cdr
eq?

What does begi n do?

