CS61A (Spring 2000) James Lin
<j amesl i n@ory. eecs. ber kel ey. edu>

Drawing Environment Diagrams

“Why draw environment diagrams? What’s the big deal?” you might be wondering. Maybe they seem unimportant
now, but they are useful. Primarily, they will allow you to understand and to predict to the behavior of a
programming language better . If you continue to take additional CS classes, you will see them again, particularly in
CS164 (Programming Languages and Compilers) and perhaps in CS61C (Machine Structures). And though they
may seem a bit arcane, if you follow their basic rules, they should be easy and straightforward to draw.

Terminology

to bind to assign a value (which may be a procedure) to a name
binding a name and its value

frame a set of bindings created by calling a (compound) procedure
environment a sequence of frames; a frame and all of its enclosing frames
bubble-pair a representation of a procedure and the pointer to its frame
Rules

Here are the basic rules for drawing environment diagrams. Remember that even though some of the details are
specific to Scheme syntax, these rules apply to any lexically scoped language (though in slightly different forms).

e Every | anbda expression creates a procedure, represented as a “bubble-pair.” The left bubble represents
the structure of the procedure; it lists the parameters to the procedure and the body (the code it executes).
The right bubble contains a pointer back to the frame in which the procedure was created.

* Whenever a (compound) procedure is invoked:
1. Create a new frame. This frame becomes the current frame. The frame always points back to the
same frame as the right bubble of the invoked procedure.
2. Bind values to the parameters of the invoked procedure.
3. Evaluate/execute the body of the invoked procedure.
* Every defi ne expression creates a new binding in the current frame.

* Every set! expression assigns a new value to the closest existing binding in the current environment.

Also remember that Scheme evaluates expressions using applicative order. This means that the arguments to a
procedure are evaluated before the procedure actually is invoked.

For our purposes, we will make the following distinction between def i ne and set ! : def i ne will be used to declare
or to create bindings only, and set ! will be used to assign values to them afterward.

In Scheme, only | anbda creates procedures. This includes implicit | ambda expressions that occur in code such as:

Drawing Environment Diagrams

(define (square x) (* x x)) (define square (lanmbda (x) (* x x)))

<

(let ((a 1) - ((lanrbda (a b c) (+ a b c))
(b 2) 12 3)
(c3))
(+abc))

Because every | et statement is syntactic sugar for a | ambda expression and its invoked procedure, every | et
statement creates a bubble-pair and a new frame for it.

(If you are having trouble with | et statements or with the syntactic sugar form of def i ne, it may help to rewrite all
the code first using their equivalent | anbda forms.)

Garbage Collection

Frames consume memory. When a procedure is invoked and creates a frame, what happens after the procedure
terminates?

The Scheme interpreter uses a garbage collector. If there exists a structure in memory—such as a frame, a
procedure, or a cons pair—that can no longer be accessed from the current environment, the garbage collector will
delete it and free the memory.

You’ll learn more details about how a garbage collector works in CS61B (Data Structures) and in CS164, but for
now just know that it discards stuff in memory that’s no longer in use.

Suggestions/Reminders

* Label/number your frames. This makes it easier to keep track of the order in which the frames were created.

e Draw all frames and bubble-pairs, even those that are “garbage collected.” Rather than erase temporary frames
and bubbles, cross them out.

e The right bubble of a procedure always points to a single frame.

¢ A frame always points to another, single frame.

* A binding can only point to a value (a number, symbol, string, pair, procedure, etc.). It cannot point to a frame.

* | anbda is a constructor for procedures. Evaluating a | anbda expression returns a new procedure.

* Before invoking a procedure, evaluate all of its arguments first.

* We don’t indicate return values unless we do something with them (such as binding them to a name).

* You will almost certainly be tested on drawing environment diagrams. Do not depend on using envdr aw.
Instead, try drawing some environments manually and use envdr awto check your work.

Drawing Environment Diagrams

Examples

Let’s draw the environment diagram for the iterative version of f act ori al :

(define (factorial n)
(define (fact-iter i result)
(if (=1 0)
resul t
(fact-iter (- i 1) (* i result))))
(fact-iter n 1))

(factorial 3)

It’s a good idea to get rid of all the syntactic sugar:

(define factorial
(lanbda (n)
(define fact-iter
(lanbda (i result)
(if (=1 0)
resul t
(fact-iter (- i 1) (* i result)))))
(fact-iter n 1)))

(factorial 3)

The rule for define is to evaluate the second argument—the Q obal

(lanbda (n) ...) part—and to bind the result to the first argument— factori al
in this case, factorial. We initially start off in the global frame,
which we’ll assume is empty. (It’s really not empty; this is where all
of the Scheme primitives are bound, but we don’t bother showing p--n
them.) We evaluate the (1 anbda (n) ...), which returns a procedure.
This procedure was created in the global frame, so that’s where the
right bubble points. We create a variable f act ori al and bind it to that procedure, indicated with an arrow.

(fact-iter n 1)

That’s it for the for the (define factorial ..) part! Now let’s handle the invocation (factorial 3).

(factorial 3) isa procedure call. Therefore we create a new frame d obal
El, pointing back to the global frame. El is now our current frame. factori al
We next assign values to the parameters, so we bind n to 3 inside of
El. Finally, we evaluate the body of the f act ori al procedure. A D n
)) b: (define fact-iter ...

The first part of factorial ’s body is another define expression. El (fact-iter n 1)
We do the same thing as we did before. This time the procedure n. 3

. . y . fact-iter
points to E1, since that’s where it was created.

p: i result

b: (if (=i 0)
resul t
(fact-iter

The second part of f act ori al ’s body is a procedure call to fact-iter. This creates a new frame, E2. E2 points to
E1l because that is where the fact -i t er procedure points. We assign values to its parameters. (Note that i is bound
to 3 and not to n! We have to use applicative-order evaluation, which means that we evaluate all of the arguments

first.)

b: (define fact-iter ..

)

)

Drawing Environment Diagrams

Finally, we evaluate the body of the fact-iter procedure, which recursively calls fact-iter. Since fact-iter is
not bound in the current frame E2, we instead look to the enclosing frame. We find the enclosing frame by following

d obal
factori al
A
p: n
F1 b: (define fact-iter)
fact-iter n 1
n: 3 (!)
fact-iter
A
p: i result
E2 b: (if (=i 0)
i: 3 resul t
result: 1 (fact-iter

the arrow from E2. From here, the process should be fairly straightforward.

d obal
factorial
A
p: n
£1 b: (define fact-iter J)
N3 (fact-iter n 1)
fact-iter
A A]
p: i result
£2 b: (if (=i 0)
i3 resul t
résult' 1 (fact-iter
[] |
E3 E4 E5
i: 2 i 1 i: 0
result: 3 result: 6 result: 6

Note that every frame created by calling fact-iter always points back to E1. Also note that we don’t write the
return value of (factorial 3) anywhere, since we don’t do anything with it.

Now let’s look at an example that maintains local state.

(define count
(let ((result 0))

(lanbda ()
(set! result (+ result 1))
result)))
(count)
(count)

Drawing Environment Diagrams

How does this work? Again, it’s a good idea to get rid of all the syntactic sugar:

(define count
((lanbda (result)

(lambda ()
(set! result (+ result 1))
result))
0))
(count)

We first evaluate the second argument to the def i ne, which is a procedure call.
We evaluate (1 anbda (result) ..), which creates a procedure. Note that
nothing points to this procedure. For convenience, however, let’s refer to this
procedure as P1.

To call P1, we first create a new frame E1 and bind 0 to the parameter resul t .
El is now our current frame.

P1

p:
b:

P1

p:
b:

resul t
(I anbda ()
(set!

resul t
(I anmbda ()
(set!

d obal

d obal

El
result:

0

Next we evaluate the body of P1. This causes us to evaluate another | anbda expression. This creates a procedure of
no arguments. This procedure points back to El, since that is where it was created. For convenience, let’s refer to

this procedure as P2.

G obal
P1
A
p: result
b: (lanbda ()
(set! El
result: O
P2
p:
b: (set!
resul t

Now we finally get back to that defi ne. The defi ne is evaluated in the global frame, so we create a variable count

-)

there. Since we invoke P1, we bind count to whatever P1 returns. In this case, P1 returns P2.

Drawing Environment Diagrams

P1

p:
b:

resul t
(1 anbda ()
(set!

d obal

count

E1l
result: 0O

A

P2
p:
b: (set! ...)
resul t

From this we can see that the count procedure has a frame that maintains local state. When we call count , we create
anew frame E2. E2 points to E1 because P2 points to E1.

There are no parameters to P2, so we then evaluate its body. (Note that we have to draw the frame E2 even though it
is empty!) In the body, we assign a new value to resul t using set!. We see that there is no existing binding r esul t
in E2, so we follow the frame’s pointer to its enclosing frame, E1. In E1 we find resul t, so we cross out the old

value and replace it with the new

P1

p:
b:

Exercises

one.

resul t
(lanbda ()
(set!

d obal
count

A
E1l P
result: }Zf 1|

A P2
E2 p:

b: (set! ...)
resul t

Draw the environment diagrams that would result from evaluating the following expressions:

exercise |

(define (foo x)
(define (bar x)

(* x x))
(" xx))

(define
(define
(define

baz foo0)
(qux x) foo)
(zot x) (foo x))

(let ((foo 3)
(bar 5))
(zot (+ foo bar)))

Drawing Environment Diagrams

exercise 2

(define (nake-counter)
(define result 0)
(lambda ()
(set! result (+ result 1))
result))

(define cl1 (nmake-counter))
(define c2 (make-counter))

(cl)
(cl)
(c2)

exercise 3

(define (foo x) (- x))
(define (bar y) (foo (* vy vy)))
(define (baz z)
(define (foo x) (+ x 1))
(set! foo bar)
(foo z))

(baz 5)

exercise 4 (from the final exam of Fall 1997)

(define (kons a b)
(lambda (m
(if (eg? m’'kar) a b)))

(define p (kons (kons 1 2) 3)

exercise 5 (from midterm #3 of Fall 1998)

(define foo
(et ((g (lanbda (x) (* x 3))))
(lanbda (y) (g (- vy 6)))))

(foo 5)

exercise 6 (from midterm #3 of Fall 1999)

(define x 4)
(define (baz x)
(define (* ab) (+ a b))
(lanbda (y) (* x y)))
(define foo (baz (* 3 10)))

(foo (* 2 x))

Drawing Environment Diagrams

Extra

What if Scheme used dynamic scope instead of lexical scope?

What if Scheme used normal-order evaluation instead of applicative-order?

Recursion, Iteration, and the Program Stack

Those of you taking CS61C have encountered the program stack. When we call procedures, we allocate space on
the stack to store its arguments and other local variables. The space we allocate on the stack—the stack frame—is
the same as a frame in environment diagramming! When the procedure terminates, we (usually) can pop the frame
off the stack and return to the previous one. (This is not entirely true; if there is an active procedure that points to a
frame, that frame cannot be discarded yet. Most other programming languages don’t have first-class procedures, so
this isn’t usually a problem.)

What happens with a recursive process? In a recursive process, every recursive call pushes a new stack frame on top
of the current one. This is why recursive processes generate stack overflow errors when they run out of memory.

What about iterative processes? They are also recursive, but the difference is that tail-recursive procedures replace
the current stack frame instead of pushing a new one on top. Even though we draw multiple frames in environment
diagrams, they really overlap each other and occupy the same space in memory. This is why iterative processes use
constant space.

Drawing Environment Diagrams

Exercise Solutions

exercise 1
G obal
f oo
bar p: X
b: (* x x)
baz N
—qux
zot
A
p: foo bar)
b: (zot ...) p- X
b: (foo x)
E1l > '3
foor" 3 E_ E_ A
bar: 5 %4 %
exercise 3
d obal
‘7400 -«
i bar p-y
b: (foo ...)
p: X
b: (- x) baz
A A A
p: z
b: (define ...)
(set! J)
E2 E3 El (foo z)
y: 5 X+ 25 z: 5
f'oo
p: X
b: (+ x 1)

exercise 2
d obal
make-counter —
cl—
c2
p:
* * b: (define result
(I anbda ()
El < E2
result: &% 2 result: 01
A A A
\/) 4
E3 E4 E5
p:
b: (set! result
exercise 4
d obal
kons ——
P
A
p: ab
b: (lanbda (m
- 1
E1 PO—e
a: 1 —a
b: 2 b: 3
4_
p: m
b: (if ...

Drawing Environment Diagrams

exercise 5 exercise 6
d obal < E3 @ obal
f oo x: -1 x: 4
baz
p: g 7 S —f 0o
b: (lanbda (y) ...) I P X
< b: (define ...)
E1l <
< (lanbda (y)
< 9 \/ El
A x: 30
p: X
b: (* x 3) p:y
E2. 5 b: (g (- vy 6)) pry A A Cab
¥ b: (* xvy) p:
b: (+ a b)
E2 E3
y: -8 a: 30
b:" 8

10

